Instructional Design
&
Learning Theory

Brenda Mergel
Graduate Student
Educational Communications and Technology
University of Saskatchewan

May, 1998

Select a different paper
Download a copy of the entire paper

version en español disponible (Word)
version en español disponible (Adobe PDF)


Introduction:

To students of instructional design the introduction and subsequent "sorting out" of the various learning theories and associated instructional design strategies can be somewhat confusing. It was out of this feeling of cognitive dissonance that this site was born.

Why does it seem so difficult to differentiate between three basic theories of learning? Why do the names of theorists appear connected to more than one theory? Why do the terms and strategies of each theory overlap?

The need for answers to these questions sparked my investigation into the available literature on learning theories and their implications for instructional design. I found many articles and internet sites that dealt with learning theory and ID, in fact, it was difficult to know when and where to draw the line. When I stopped finding new information, and the articles were reaffirming what I had already read, I began to write.

The writing process was a learning experience for me and now that I have finished, I want to start over and make it even better, because I know more now than I did when I began. Every time I reread an article, there were ideas and lists that I would wish to add to my writing. Perhaps in further development of this site I will change and refine my presentation.

Reading about the development of learning theories and their connection to instructional design evoked, for me, many parallels with the development of other theories in sciences. I have included some of those thoughts as asides within the main body of text.

Besides behaviorism, cognitivism and constructivism one could discuss such topics as connoisseurship, semiotics, and contextualism, but I decided that a clear understanding of the basic learning theories would be best. The main sections of this site are as follows:

 

What are Theories and Models?

Behaviorism, Cognitivism and Constructivism - The Basics

Behaviorism: Based on observable changes in behavior. Behaviorism focuses on a new behavioral pattern being repeated until it becomes automatic.

Cognitivism: Based on the thought process behind the behavior. Changes in behavior are observed, and used as indicators as to what is happening inside the learner's mind.

Constructivism: Based on the premise that we all construct our own perspective of the world, through individual experiences and schema. Constructivism focuses on preparing the learner to problem solve in ambiguous situations.

(Schuman, 1996)

The Basics of Behaviorism

Behaviorism, as a learning theory, can be traced back to Aristotle, whose essay "Memory" focused on associations being made between events such as lightning and thunder. Other philosophers that followed Aristotle's thoughts are Hobbs (1650), Hume (1740), Brown (1820), Bain (1855) and Ebbinghause (1885) (Black, 1995).

The theory of behaviorism concentrates on the study of overt behaviors that can be observed and measured (Good & Brophy, 1990). It views the mind as a "black box" in the sense that response to stimulus can be observed quantitatively, totally ignoring the possibility of thought processes occurring in the mind. Some key players in the development of the behaviorist theory were Pavlov, Watson, Thorndike and Skinner.

 

Pavlov (1849 - 1936)

For most people, the name "Pavlov" rings a bell (pun intended). The Russian physiologist is best known for his work in classical conditioning or stimulus substitution. Pavlov's most famous experiment involved food, a dog and a bell.

Pavlov's Experiment

 

Stimulus and Response Items of Pavlov's Experiment

Food

Unconditioned Stimulus

Salivation

Unconditioned Response (natural, not learned)

Bell

Conditioned Stimulus

Salivation

Conditioned Response (to bell)

 

Other Observations Made by Pavlov
(What was the name of that dog??)

 

Thorndike (1874 - 1949)

Edward Thorndike did research in animal behavior before becoming interested in human psychology. He set out to apply "the methods of exact science" to educational problems by emphasizing "accurate quantitative treatment of information". "Anything that exists, exists in a certain quantity and can be measured" (Johcich, as cited in Rizo, 1991). His theory, Connectionism, stated that learning was the formation of a connection between stimulus and response.

Thorndike's laws were based on the stimulus-response hypothesis. He believed that a neural bond would be established between the stimulus and response when the response was positive. Learning takes place when the bonds are formed into patterns of behavior (Saettler, 1990).

 

Watson (1878 - 1958)

John B. Watson was the first American psychologist to use Pavlov's ideas. Like Thorndike, he was originally involved in animal research, but later became involved in the study of human behavior.

Watson believed that humans are born with a few reflexes and the emotional reactions of love and rage. All other behavior is established through stimulus-response associations through conditioning.

Watson's Experiment

Watson demonstrated classical conditioning in an experiment involving a young child (Albert) and a white rat. Originally, Albert was unafraid of the rat; but Watson created a sudden loud noise whenever Albert touched the rat. Because Albert was frightened by the loud noise, he soon became conditioned to fear and avoid the rat. The fear was generalized to other small animals. Watson then "extinguished" the fear by presenting the rat without the loud noise. Some accounts of the study suggest that the conditioned fear was more powerful and permanent than it really was. (Harris, 1979; Samelson, 1980, in Brophy, 1990)

Certainly Watson's research methods would be questioned today; however, his work did demonstrate the role of conditioning in the development of emotional responses to certain stimuli. This may explain certain fears, phobias and prejudices that people develop.

(Watson is credited with coining the term "behaviorism")

 

Skinner (1904 - 1990)

Like Pavlov, Watson and Thorndike, Skinner believed in the stimulus-response pattern of conditioned behavior. His theory dealt with changes in observable behavior, ignoring the possibility of any processes occurring in the mind. Skinner's 1948 book, Walden Two , is about a utopian society based on operant conditioning. He also wrote,Science and Human Behavior, (1953) in which he pointed out how the principles of operant conditioning function in social institutions such as government, law, religion, economics and education (Dembo, 1994).

Skinner's work differs from that of his predecessors (classical conditioning), in that he studied operant behavior (voluntary behaviors used in operating on the environment).

 

Difference between Classical and Operant Conditioning

Skinner's Operant Conditioning Mechanisms

Skinner and Behavioral Shaping

If placed in a cage an animal may take a very long time to figure out that pressing a lever will produce food. To accomplish such behavior successive approximations of the behavior are rewarded until the animal learns the association between the lever and the food reward. To begin shaping, the animal may be rewarded for simply turning in the direction of the lever, then for moving toward the lever, for brushing against the lever, and finally for pawing the lever.

Behavioral chaining occurs when a succession of steps need to be learned. The animal would master each step in sequence until the entire sequence is learned.

Reinforcement Schedules

Once the desired behavioral response is accomplished, reinforcement does not have to be 100%; in fact it can be maintained more successfully through what Skinner referred to as partial reinforcement schedules. Partial reinforcement schedules include interval schedules and ratio schedules.

Variable interval and especially, variable ratio schedules produce steadier and more persistent rates of response because the learners cannot predict when the reinforcement will come although they know that they will eventually succeed.

(Have you checked your Lottery tickets lately?)

 

The Basics of Cognitivism

As early as the 1920's people began to find limitations in the behaviorist approach to understanding learning. Edward Tolman found that rats used in an experiment appeared to have a mental map of the maze he was using. When he closed off a certain portion of the maze, the rats did not bother to try a certain path because they "knew" that it led to the blocked path. Visually, the rats could not see that the path would result in failure, yet they chose to take a longer route that they knew would be successful (Operant Conditioning [On-line]).

Behaviorists were unable to explain certain social behaviors. For example, children do not imitate all behavior that has been reinforced. Furthermore, they may model new behavior days or weeks after their first initial observation without having been reinforced for the behavior. Because of these observations, Bandura and Walters departed from the traditional operant conditioning explanation that the child must perform and receive reinforcement before being able to learn. They stated in their 1963 book, Social Learning and Personality Development, that an individual could model behavior by observing the behavior of another person. This theory lead to Bandura's Social Cognitive Theory (Dembo, 1994).

What is Cognitivism?

"Cognitive theorists recognize that much learning involves associations established through contiguity and repetition. They also acknowledge the importance of reinforcement, although they stress its role in providing feedback about the correctness of responses over its role as a motivator. However, even while accepting such behavioristic concepts, cognitive theorists view learning as involving the acquisition or reorganization of the cognitive structures through which humans process and store information." (Good and Brophy, 1990, pp. 187).

As with behaviorism, cognitive psychology can be traced back to the ancient Greeks, Plato and Aristotle. The cognitive revolution became evident in American psychology during the 1950's (Saettler, 1990). One of the major players in the development of cognitivism is Jean Piaget, who developed the major aspects of his theory as early as the 1920's. Piaget's ideas did not impact North America until the 1960's after Miller and Bruner founded the Harvard Center for Cognitive studies.

Key Concepts of Cognitive Theory

 

The Basics of Constructivism

Bartlett (1932) pioneered what became the constructivist approach (Good & Brophy, 1990). Constructivists believe that "learners construct their own reality or at least interpret it based upon their perceptions of experiences, so an individual's knowledge is a function of one's prior experiences, mental structures, and beliefs that are used to interpret objects and events." "What someone knows is grounded in perception of the physical and social experiences which are comprehended by the mind." (Jonasson, 1991).

If each person has their own view about reality, then how can we as a society communicate and/or coexist? Jonassen, addressing this issue in his article Thinking Technology: Toward a Constructivist Design Model, makes the following comments:

If one searches through the many philosophical and psychological theories of the past, the threads of constructivism may be found in the writing of such people as Bruner, Ulrick, Neiser, Goodman, Kant, Kuhn, Dewey and Habermas. The most profound influence was Jean Piaget's work which was interpreted and extended by von Glasserfield (Smorgansbord, 1997).

Realistic vs. Radical Construction

Realistic constructivism - cognition is the process by which learners eventually construct mental structures that correspond to or match external structures located in the environment.

Radical constructivism - cognition serves to organize the learners experiential world rather than to discover ontological reality

(Cobb, 1996, in Smorgansbord, 1997).

The Assumptions of Constructivism - Merrill

It Boggles the Mind!

If you are reading about learning theories, you may notice that it is difficult to pin down what theory a certain theorist belongs to. This can confuse you, since, just as you think you have it cased, a name you originally thought was in the behavioral category shows up in a constructivism article.

This problem is often the result of theorists and their ideas evolving over time and changes they make to their original ideas. Davidson includes the following example in an article she wrote:

"Considered by most to be representative of [a] behaviourist learning paradigm, Gagne's theory of learning and events of instruction have evolved progressively to approach a more cognitive theory. His discussion of relating present information and past knowledge (event #3) and the inclusion of learning transfer (event#9) are indicative of this shift toward constructivism." (Davidson, 1998)

Okay? Okay. :-)


Comparing The Development of Learning Theories to the Development of the Atomic Theory

Atomic Theory

Since the beginning of history, people have theorized about the nature of matter. The ancient Greeks thought that matter was composed of fire, water, earth and air. Another view, the continuous theory, was that matter could be infinitely subdivided into smaller and smaller pieces without change. The Greek philosophers, Democritis and Lucippus, came up with the idea that matter made up of particles so small that they cannot be divided into anything smaller. They called their particles "atomos", which is the Greek word for "indivisible". It wasn't until the 18th century that anyone could prove one theory was better than another. John Dalton in 1803, with his law of multiple proportions, proposed a theory of matter based on the existence of atoms. The rest is history:

 

 

Learning Theory

Given that we will most likely never "see" an atom, we will never "see" learning either. Therefore our learning models are mental pictures that enable us to understand that which we will never see. Does the development of learning theory follow a similar pattern as the atomic theory?

It seems that learning theories, like the study of matter can be traced back to the ancient Greeks. In the 18th century, with the onset of scientific inquiry, people began in ernest to study and develop models of learning. The behaviorist learning theory centered around that which was observable, not considering that there was anything occurring inside the mind. Behaviorism can be compared to Dalton's atom, which was simply a particle. Using overt behavior as a starting point, people began to realize that there is something happening inside the organism that should be considered, since it seemed to affect the overt behavior. Similarly, in physical science, people such as Crookes, Thompson, Rutherford and Bohr realized that there was something occurring within the atom causing its behavior. Thus the cognitive model of learning was born. Soon, however, theorists realized that the "atom" is not stable, it is not so "cut and dried". Enter the constructivist learning theory which tells us that each organism is constantly in flux, and although the old models work to a certain degree, other factors most also be considered. Could the constructivist approach be considered to be the quantum theory of learning?

The quantum theory builds upon the previous atomic theories. Constructivism builds upon behaviorism and cognitivism in the sense that it accepts multiple perspectives and maintains that learning is a personal interpretation of the world. I believe that behavioral strategies can be part of a constructivist learning situation, if that learner choses and finds that type of learning suitable to their experiences and learning style. Cognitive approaches have a place in constructivism also, since constructivism recognises the concept of schema and building upon prior knowledge and experience. Perhaps the greatest difference is that of evaluation. In behaviorism and cognitivism, evaluation is based on meeting specific objectives, whereas in constructivism, evaluation is much more subjective. Of course, what if I, as a learner, negotiate my evaluation and wish to include objective evaluation? Then isn't behavioral and cognitive strategy a part of constructivism?

Perhaps the learning theory used depends upon the learning situation, just as the atomic theory used, depends upon the learning situation. The bohr atom is often used to introduce the concept of protons, neutrons and electrons to grade school students. Perhaps behaviorism is suitable to certain basic learning situations, whereas "quantum" constructivism is better suited to advanced learning situations.

 


 

A Biological Analogy to Learning Theory Classification

The classification of learning theories is somewhat analogous to the classification system designed by biologists to sort out living organisms. Like any attempt to define categories, to establish criteria, the world does not fit the scheme in all cases. Originally there was a plant kingdom and an animal kingdom, but eventually organisms that contained cholophyll and were mobile needed to be classified. The protist kingdom was established. The exact criteria for protists are still not established, but it is a classification that gives us a place for all of the organisms that don't fit neatly into either the plant or animal kingdoms.

To extend the analogy, biologists continued to modify the classification system as know knowledge and insights into existing knowledge were discovered. The advent of new technology such as the electron microscope enabled the addition of the monera kingdom. Recently, the distinctive features of fungi have brought about a proposal for a fifth kingdom, fungi. This development and adjustment of the taxonomy remins one of behaviourism, cognitivism, constructivism, postmodernism, contextualism, semiotics...

 


 
The History of Behaviorism, Cognitivism and Constructivism in Instructional Design

Behaviorism and Instructional Design

** This section on behaviorism is largely a synopsis of information from Paul Saettler's book, The History of American Educational Technology, (1990).

In Paul Saettler's book The History of American Educational Technology, he states that behaviorism did not have an impact on educational technology until the 1960s, which was the time that behaviorism actually began to decrease in popularity in American psychology. Saettler identified six areas that demonstrate the impact of behaviorism on Educational Technology in America: the behavioral objectives movement; the teaching machine phase; the programmed instruction movement; individualized instructional approaches, computer-assisted learning and the systems approach to instruction.

Behavioral Objectives Movement:

A behavioral objective states learning objectives in "specified, quantifiable, terminal behaviors" (Saettler, pp. 288, 1990). Behavioral objectives can be summed up using the mnemonic device ABCD (Schwier, 1998).

Example: After having completed the unit the student will be able to answer correctly 90% of the questions on the posttest.

To develop behavioral objectives a learning task must be broken down through analysis into specific measurable tasks. The learning success may be measured by tests developed to measure each objective.

The advent of behavioral objectives can be traced back to the Elder Sophists of ancient Greece, Cicero, Herbart and Spencer, but Franklin Bobbitt developed the modern concept of behavioral objectives in the early 1900s (Saettler, 1990).

Taxonomic Analysis of Learning Behaviors

Mastery Learning

Mastery learning was originally developed by Morrison in the 1930s. His formula for mastery was "Pretest, teach, test the result, adapt procedure, teach and test again to the point of actual learning." (Morrison, 1931, in Saettler, 1990). Mastery learning assumes that all students can master the materials presented in the lesson. Bloom further developed Morrison's plan, but mastery learning is more effective for the lower levels of learning on Bloom's taxonomy, and not appropriate for higher level learning (Saettler, 1990).

Military and Industrial Approach

For military and industrial training, "behavioral objectives were written descriptions of specific, terminal behaviors that were manifested in terms of observable, measurable behavior." (Saettler, 1990) Robert Mager wrote Preparing Instructional Objectives, in 1962 which prompted interest and use of behavioral objectives among educators. Gagne and Briggs who also had backgrounds in military and industrial psychology developed a set of instructions for writing objectives that is based on Mager's work.

By the late 1960's most teachers were writing and using behavioral objectives. There were, of course, people who questioned the breaking down of subject material into small parts, believing that it would lead away from an understanding of the "whole" (Saettler, 1990).

Accountability Movement

 A movement known as scientific management of industry arose in the early 1900s in response to political and economic factors of that time. Franklin Bobbitt proposed utilization of this system in education stressing that the standards and direction of education should stem from the consumer - society. Bobbitt's ideas exemplified the idea of accountability, competency-based education and performance-based education, which because of similar economic and political factors, experienced a revival in America during the late 1960s and 1970s (Saettler, 1990).

Teaching Machines and Programmed Instruction Movement 

Although the elder Sophists, Comenius, Herbart and Montessori used the concept of programmed instruction in their repertoire, B.F. Skinner is the most current and probably best known advocate of teaching machines and programmed learning. Contributors to this movement include the following:

Early Use of Programmed Instruction

After experimental use of programmed instruction in the 1920s and 1930s, B. F. Skinner and J.G. Holland first used programmed instruction in behavioral psychology courses at Harvard in the late 1950s. Use of programmed instruction appeared in elementary and secondary schools around the same time. Much of the programmed instruction in American schools was used with individuals or small groups of students and was more often used in junior high schools than senior or elementary schools (Saettler, 1990).

Early use of programmed instruction tended to concentrate on the development of hardware rather than course content. Concerned developers moved away from hardware development to programs based on analysis of learning and instruction based on learning theory. Despite these changes, programmed learning died out in the later part of the 1960s because it did not appear to live up to its original claims (Saettler, 1990).

Individualized Approaches to Instruction

Similar to programmed learning and teaching machines individualized instruction began in the early 1900s, and was revived in the 1960s. The Keller Plan, Individually Prescribed Instruction, Program for Learning in Accordance with Needs, and Individually Guided Education are all examples of individualized instruction in the U.S. (Saettler, 1990).

Keller Plan (1963)

Individually Prescribed Instruction (IPI) (1964)

Program for Learning in Accordance with Needs (PLAN) (1967)

Computer-Assisted Instruction (CAI)

Computer-assisted instruction was first used in education and training during the 1950s. Early work was done by IBM and such people as Gordon Pask, and O.M. Moore, but CAI grew rapidly in the 1960s when federal funding for research and development in education and industrial laboratories was implemented. The U.S. government wanted to determine the possible effectiveness of computer-assisted instruction, so they developed two competing companies, (Control Data Corporation and Mitre Corporation) who came up with the PLATO and TICCIT projects. Despite money and research, by the mid seventies it was apparent that CAI was not going to be the success that people had believed. Some of the reasons are:

Computer-assisted instruction was very much drill-and-practice - controlled by the program developer rather than the learner. Little branching of instruction was implemented although TICCIT did allow the learner to determine the sequence of instruction or to skip certain topics.

(Saettler, 1990)

Systems Approach to Instruction

The systems approach developed out of the 1950s and 1960s focus on language laboratories, teaching machines, programmed instruction, multimedia presentations and the use of the computer in instruction. Most systems approaches are similar to computer flow charts with steps that the designer moves through during the development of instruction. Rooted in the military and business world, the systems approach involved setting goals and objectives, analyzing resources, devising a plan of action and continuous evaluation/modification of the program. (Saettler, 1990)

 

Cognitivism and Instructional Design

Although cognitive psychology emerged in the late 1950s and began to take over as the dominant theory of learning, it wasn't until the late 1970s that cognitive science began to have its influence on instructional design. Cognitive science began a shift from behavioristic practices which emphasised external behavior, to a concern with the internal mental processes of the mind and how they could be utilized in promoting effective learning. The design models that had been developed in the behaviorist tradition were not simply tossed out, but instead the "task analysis" and "learner analysis" parts of the models were embellished. The new models addressed component processes of learning such as knowledge coding and representation, information storage and retrieval as well as the incorporation and integration of new knowledge with previous information (Saettler, 1990). Because Cognitivism and Behaviorism are both governed by an objective view of the nature of knowledge and what it means to know something, the transition from behavioral instructional design principles to those of a cognitive style was not entirely difficult. The goal of instruction remained the communication or transfer of knowledge to learners in the most efficient, effective manner possible (Bednar et al., in Anglin, 1995). For example, the breaking down of a task into small steps works for a behaviorist who is trying to find the most efficient and fail proof method of shaping a learner's behavior. The cognitive scientist would analyze a task, break it down into smaller steps or chunks and use that information to develop instruction that moves from simple to complex building on prior schema.

The influence of cognitive science in instructional design is evidenced by the use of advance organizers, mnemonic devices, metaphors, chunking into meaningful parts and the careful organization of instructional materials from simple to complex.

Cognitivism and Computer-Based Instruction

Computers process information in a similar fashion to how cognitive scientists believe humans process information: receive, store and retrieve. This analogy makes the possibility of programming a computer to "think" like a person conceivable, i.e.. artificial intelligence.

Artificial intelligence involve the computer working to supply appropriate responses to student input from the computer's data base. A trouble-shooting programs is one example of these programs. Below is a list of some programs and their intended use:

 

Constructivism and Instructional Design

The shift of instructional design from behaviorism to cognitivism was not as dramatic as the move into constructivism appears to be, since behaviorism and cognitivism are both objective in nature. Behaviorism and cognitivism both support the practice of analyzing a task and breaking it down into manageable chunks, establishing objectives, and measuring performance based on those objectives. Constructivism, on the other hand, promotes a more open-ended learning experience where the methods and results of learning are not easily measured and may not be the same for each learner.

While behaviorism and constructivism are very different theoretical perspectives, cognitivism shares some similarities with constructivism. An example of their compatibility is the fact that they share the analogy of comparing the processes of the mind to that of a computer. Consider the following statement by Perkins:

"...information processing models have spawned the computer model of the mind as an information processor. Constructivism has added that this information processor must be seen as not just shuffling data, but wielding it flexibly during learning -- making hypotheses, testing tentative interpretations, and so on." (Perkins, 1991, p.21 in Schwier, 1998 ).
 
Other examples of the link between cognitive theory and constructivism are:

Despite these similarities between cognitivism and constructivism, the objective side of cognitivism supported the use of models to be used in the systems approach of instructional design. Constructivism is not compatible with the present systems approach to instructional design, as Jonassen points out :

"The conundrum that constructivism poses for instructional designers, however, is that if each individual is responsible for knowledge construction, how can we as designers determine and insure a common set of outcomes for leaning, as we have been taught to do?" (Jonasson, [On-line])

In the same article, Jonassen (Jonasson, [On-line]) lists the following implications of constructivism for instructional design:

"...purposeful knowledge construction may be facilitated by learning environments which:
"Although we believe that constructivism is not a prescriptive theory of instruction, it should be possible to provide more explicit guidelines on how to design learning environments that foster constructivist learning"
 

Jonassen points out that the difference between constructivist and objectivist, (behavioral and cognitive), instructional design is that objective design has a predetermined outcome and intervenes in the learning process to map a pre-determined concept of reality into the learner's mind, while constructivism maintains that because learning outcomes are not always predictable, instruction should foster, not control, learning. With this in mind, Jonassen looks at the commonalties among constructivist approaches to learning to suggest a "model" for designing constructivist learning environments.

"...a constructivist design process should be concerned with designing environments which support the construction of knowledge, which ..."

The technological advances of the 1980s and 1990s have enabled designers to move toward a more
constructivist approach to design of instruction. One of the most useful tools for the constructivist designer is hypertext and hypermedia because it allows for a branched design rather than a linear format of instruction. Hyperlinks allow for learner control which is crucial to constructivist learning; however, there is some concerns over the novice learner becoming "lost" in a sea of hypermedia. To address this concern, Jonassen and McAlleese (Jonnassen & McAlleese, [On-line]) note that each phase of knowledge acquisition requires different types of learning and that initial knowledge acquisition is perhaps best served by classical instruction with predetermined learning outcomes, sequenced instructional interaction and criterion-referenced evaluation while the more advanced second phase of knowledge acquisition is more suited to a constructivist environment.

If a novice learner is unable to establish an "anchor" in a hypermedia environment they may wander aimlessly through hypermedia becoming completely disoriented. Reigeluth and Chung suggest a prescriptive system which advocates increased learner control. In this method, students have some background knowledge and have been given some instruction in developing their own metacognitive strategies and have some way to return along the path they have taken, should they become "lost". (Davidson, 1998)

Most literature on constructivist design suggests that learners should not simply be let loose in a hypermedia or hypertext environment, but that a mix of old and new (objective and constructive) instruction/learning design be implemented. Davidson's (1998) article, suggesting a criteria for hypermedia learning based on an "exploration of relevant learning theories", is an example of this method.

Having noted the eclectic nature of instructional design, it is only fair to point out that not all theorists advocate a "mix and match" strategy for instructional design. Bednar, Cunningham, Duffy and Perry wrote an article that challenges the eclectic nature if instructional systems design by pointing out that "...abstracting concepts and strategies from the theoretical position that spawned then strips them of their meaning." They question objectivist epistemology completely and have adopted what they consider a constructivist approach to instructional design. In the article they compare the traditional approaches of analysis, synthesis, and evaluation to that of a constructivist approach. (Bednar, Cunningham, Duffy & Perry, 1995)


 

Learning Theories and the Practice of Instructional Design 

What is the difference between the learning theories in terms of the practice of instructional design? Is one approach more easily achieved than another? To address this, one may consider that cognitive theory is the dominant theory in instructional design and many of the instructional strategies advocated and utilized by behaviorists are also used by cognitivists, but for different reasons. For example, behaviorists assess learners to determine a starting point for instruction, while cognitivists look at the learner to determine their predisposition to learning (Ertmer & Newby, 1993). With this in mind, the practice of instructional design can be viewed from a behaviorist/cognitivist approach as opposed to a constructivist approach.

When designing from a behaviorist/cognitivist stance, the designer analyzes the situation and sets a goal. Individual tasks are broken down and learning objectives are developed. Evaluation consists of determining whether the criteria for the objectives has been met. In this approach the designer decides what is important for the learner to know and attempts to transfer that knowledge to the learner. The learning package is somewhat of a closed system, since although it may allow for some branching and remediation, the learner is still confined to the designer's "world".

To design from a constructivist approach requires that the designer produces a product that is much more facilitative in nature than prescriptive. The content is not prespecified, direction is determined by the learner and assessment is much more subjective because it does not depend on specific quantitative criteria, but rather the process and self-evaluation of the learner. The standard pencil-and-paper tests of mastery learning are not used in constructive design; instead, evaluation is based on notes, early drafts, final products and journals. (Assessment [On-line])

Because of the divergent, subjective nature of constructive learning, it is easier for a designer to work from the systems, and thus the objective approach to instructional design. That is not to say that classical instructional design techniques are better than constructive design, but it is easier, less time consuming and most likely less expensive to design within a "closed system" rather than an "open" one. Perhaps there is some truth in the statement that "Constructivism is a 'learning theory', more than a 'teaching approach'." (Wilkinson, 1995)


 

Learning Theories - Some Strengths and Weaknesses

What are the perceived strengths and weaknesses of using certain theoretical approaches to instructional design?

Behaviorism

Weakness -the learner may find themselves in a situation where the stimulus for the correct response does not occur, therefore the learner cannot respond. - A worker who has been conditioned to respond to a certain cue at work stops production when an anomaly occurs because they do not understand the system.

Strength - the learner is focused on a clear goal and can respond automatically to the cues of that goal. - W.W.II pilots were conditioned to react to silhouettes of enemy planes, a response which one would hope became automatic.

Cognitivism

Weakness - the learner learns a way to accomplish a task, but it may not be the best way, or suited to the learner or the situation. For example, logging onto the internet on one computer may not be the same as logging in on another computer.

Strength - the goal is to train learners to do a task the same way to enable consistency. - Logging onto and off of a workplace computer is the same for all employees; it may be important do an exact routine to avoid problems.

Constructivism

Weakness - in a situation where conformity is essential divergent thinking and action may cause problems. Imagine the fun Revenue Canada would have if every person decided to report their taxes in their own way - although, there probably are some very "constructive" approaches used within the system we have.

Strength - because the learner is able to interpret multiple realities, the learner is better able to deal with real life situations. If a learner can problem solve, they may better apply their existing knowledge to a novel situation.

(Schuman, 1996)


Is There One Best Learning Theory for Instructional Design?

Why bother with Theory at all?

A solid foundation in learning theory is an essential element in the preparation of ISD professionals because it permeates all dimensions of ISD (Shiffman, 1995). Depending on the learners and situation, different learning theories may apply. The instructional designer must understand the strengths and weaknesses of each learning theory to optimize their use in appropriate instructional design strategy. Recipes contained in ID theories may have value for novice designers (Wilson, 1997), who lack the experience and expertise of veteran designers. Theories are useful because they open our eyes to other possibilities and ways of seeing the world. Whether we realize it or not, the best design decisions are most certainly based on our knowledge of learning theories.

An Eclectic Approach to Theory in Instructional Design

The function of ID is more of an application of theory, rather than a theory itself. Trying to tie Instructional Design to one particular theory is like school vs. the real world. What we learn in a school environment does not always match what is out there in the real world, just as the prescriptions of theory do not always apply in practice, (the real world). From a pragmatic point of view, instructional designers find what works and use it.

What Works and How Can We Use It?

Behaviorism, cognitivism and constructivism - what works where and how do we knit everything together to at least give ourselves some focus in our approach to instructional design? First of all we do not need to abandon the systems approach but we must modify it to accommodate constructivist values. We must allow circumstances surrounding the learning situation to help us decide which approach to learning is most appropriate. It is necessary to realize that some learning problems require highly prescriptive solutions, whereas others are more suited to learner control of the environment. (Schwier, 1995)

Jonnassen in Manifesto for a Constructive Approach to Technology in Higher Education ([On-line]) identified the following types of learning and matched them with what he believes to be appropriate learning theory approaches.

1. Introductory Learning - learners have very little directly transferable prior knowledge about a skill or content area. They are at the initial stages of schema assembly and integration. At this stage classical instructional design is most suitable because it is predetermined, constrained, sequential and criterion-referenced. The learner can develop some anchors for further exploration.

2. Advanced Knowledge Acquisition - follows introductory knowledge and precedes expert knowledge. At this point constructivist approaches may be introduced.

3. Expertise is the final stage of knowledge acquisition. In this stage the learner is able to make intelligent decisions within the learning environment. A constructivist approach would work well in this case.

Having pointed out the different levels of learning, Jonassen stresses that it is still important to consider the context before recommending any specific methodology.

Reigeluth's Elaboration Theory which organizes instruction in increasing order of complexity and moves from prerequisite learning to learner control may work in the eclectic approach to instructional design, since the learner can be introduced to the main concepts of a course and then move on to more of a self directed study that is meaningful to them and their particular context.

After having compared and contrasted behaviorism, cognitivism and constructivism, Ertmer and Newby (1993) feel that the instructional approach used for novice learners may not be efficiently stimulating for a learner who is familiar with the content. They do not advocate one single learning theory, but stress that instructional strategy and content addressed depend on the level of the learners. Similar to Jonassen, they match learning theories with the content to be learned:

... a behavioral approach can effectively facilitate mastery of the content of a
profession (knowing what); cognitive strategies are useful in teaching problem
-solving tactics where defined facts and rules are applied in unfamiliar situations
(knowing how); and constructivist strategies are especially suited to dealing with
ill-defined problems through reflection-in-action. (Ertmer P. & Newby, T., 1993)
  
Behavioral
... tasks requiring a low degree of processing (e.g., basic paired associations,
discriminations, rote memorization) seem to be facilitated by strategies most
frequently associated with a behavioral outlook (e.g., stimulus-response, contiguity
of feedback/reinforcement).
 
Cognitive
Tasks requiring an increased level of processing (e.g., classifications, rule or
procedural executions) are primarily associated with strategies
having a stronger cognitive emphasis (e.g., schematic organization, analogical
reasoning, algorithmic problem solving).

Constructive
Tasks demanding high levels of processing (e.g., heuristic problem solving,
personal selection and monitoring of cognitive strategies) are frequently

est learned with strategies advanced by the constructivist perspective (e.g.,
situated learning, cognitive apprenticeships, social negotiation.

(Ertmer P. & Newby, T., 1993)

Ertmer and Newby (1993) believe that the strategies promoted by different learning theories overlap (the same strategy for a different reason) and that learning theory strategies are concentrated along different points of a continuum depending of the focus of the learning theory - the level of cognitive processing required.

 

Ertmer and Newby's suggestion that theoretical strategies can complement the learner's level of task knowledge, allows the designer to make the best use of all available practical applications of the different learning theories. With this approach the designer is able to draw from a large number of strategies to meet a variety of learning situations.

 


Conclusion

Upon completion of this site on learning theories and instructional design, I have not only accomplished my objective, but gained insight and appreciation for the different learning theories and their possible application to instructional design.

It was interesting for me to find that I am not alone in my perspective regarding learning theories and instructional design. There is a place for each theory within the practice of instructional design, depending upon the situation and environment. I especially favor the idea of using an objective approach to provide the learner with an "anchor" before they set sail on the open seas of knowledge. A basic understanding of the material in question provides the learner with a guiding compass for further travel.

Another consideration is the distinction between "training" and "education". In today's competitive business world, the instructional designer may be required to establish and meet the objectives of that business. On the other hand, in a school setting, the designer may be challenged to provide material that fosters an individual to find divergent approaches to problem solving. Whichever situation the instructional designer finds themselves in, they will require a thorough understanding of learning theories to enable them to provide the appropriate learning environment.

Finally, though Instructional Design may have a behaviorist tradition, new insights to the learning process continue to replace, change and alter the process. Advancements in technology make branched constructivist approaches to learning possible. Whether designing for training or education, the instructional designer's toolbox contains an ever changing and increasing number of theoretical applications and physical possibilities. With intelligent application of learning theory strategies and technology, the modern designer will find solutions to the learning requirements of the 21st century. 

 

 


**Web addresses updated Feb. 5, 2001. Some sites seem to be no longer available, but I am searching for them.

References & Bibliography

Assessment in a constructivist learning environment. [On-line] http://www.coe.missouri.edu:80tiger.coe.missouri.edu/

Bednar, A.K., Cunningham, D., Duffy, T.M., Perry, J.P. (1995). Theory into practice: How do we link? In G.J. Anglin (Ed.), Instructional technology: Past, present and future. (2nd ed., pp. 100-111)., Englewood, CO: Libraries Unlimited, Inc.

Behaviorism and constructivism. [On-line]. Available: http://hagar.up.ac.za/catts/learner/debbie/CADVANT.HTM

 

Behaviorism. [On-line]. Available: http://sacam.oren.ortn.edu/~ssganapa/disc/behave.html

Beyond constructivism - contextualism. [On-line]. Available: http://tiger.coe.missouri.edu/~t377/cx_intro.html

Black, E. (1995). Behaviorism as a learning theory. [On-line]. Available: http://129.7.160.115/inst5931/Behaviorism.html

Bracy, B. (Undated) Emergent learning technologies. [On-line]. Available: gopher://unix5.nysed.gov/00/TelecommInfo/Reading%20Room%20Points%20View/

Burney, J. D. (Undated). Behaviorism and B. F. Skinner. [On-line]. Available: http://www2.una.edu/education/Skinner.htm

Conditions of learning (R. Gagne). [On-line]. Available: http://www.gwu.edu/~tip/gagne.html

Constructivist theory (J. Bruner). [On-line]. Available: http://www.gwu.edu/~tip/bruner.html

Cunningham, D. J. (1991). Assessing constructions and constructing assessments: A dialogue. Educational Technology, May, 13-17.

Davidson, K. (1998). Education in the internet--linking theory to reality. [On-line]. Available: http://www.oise.on.ca/~kdavidson/cons.html

Dembo, M. H. (1994). Applying educational psychology (5th ed.). White Plains, NY: Longman Publishing Group.

Dick, W. (1991). An instructional designer's view of constructivism. Educational Technology, May, 41-44.

Dorin, H., Demmin, P. E., Gabel, D. (1990). Chemistry: The study of matter. (3rd ed.). Englewood Cliffs, NJ: Prentice Hall, Inc.

Duffy, T. M., Jonassen, D. H. (1991). Constructivism: New implications for instructional technolgy? Educational Technology, May, 7-12.

Ertmer, P. A., Newby, T. J. (1993). Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 6 (4), 50-70.

Genetic epistemology (J.Piaget). [On-line]. Available: http://www.gwu.edu/~tip/piaget.html

Good, T. L., Brophy, J. E. (1990). Educational psychology: A realistic approach. (4th ed.).White Plains, NY: Longman

Information processing theory and instructional technology. [On-line]. Available: http://tiger.coe.missouri.edu/~t377/IPTools.html

Information process theory of learning. [On-line]. Available: http://tiger.coe.missouri.edu/~t377/IPTheorists.html

Jonassen, D. H. (1991) Objectivism versus constructivism: do we need a new philosophical paradigm? Educational Technology Research and Development, 39 (3), 5-14.

Jonasson, D.H. (Undated). Thinking technology: Toward a constructivist design model. [On-line]. Available: http://ouray.cudenver.edu/~slsanfor/cnstdm.txt

Jonassen, D. H., McAleese, T.M.R. (Undated). A Manifesto for a constructivist approach to technology in higher education. [Last Retrieved December 12, 2005]. http://apu.gcal.ac.uk/clti/papers/TMPaper11.html

Khalsa, G. (Undated). Constructivism. [On-line]. Available: http://www.gwu.edu/~etl/khalsa.html

Kulikowski, S. (Undated). The constructivist tool bar. [On-line]. Available: http://www.coe.missouri.edu:80tiger.coe.missouri.edu/

Learning theory: Objectivism vs constructivism.[On-line]. Available: http://media.hku.hk/cmr/edtech/Constructivism.html

Lebow, D. (1993). Constructivist values for instructional systems design: Five principles toward a new mindset. Educational Technology Research and Development, 41 (3), 4-16.

Lewis, D. (1996). Perspectives on instruction. [On-line]. Available: http://edweb.sdsu.edu/courses/edtech540/Perspectives/Perspectives.html

Lieu, M.W. (1997). Final project for EDT700, Learning theorists and learning theories to modern instructional design. [On-line]. Available: http://www.itec.sfsu.edu/faculty/kforeman/edt700/theoryproject/index.html

Merrill, M. D. (1991). Constructivism and instructional design. Educational Technology, May, 45-53.

Military. [On-line]. Available: http://www.gwu.edu/~tip/military.html

Operant conditioning (B.F. Skinner). [On-line]. Available: http://www.gwu.edu/~tip/skinner.html

Operant conditioning and behaviorism - an historical outline. [On-line]. Available: http://www.biozentrum.uni-wuerzburg.de/genetics/behavior/learning/behaviorism.html

Perkins, D. N. (1991). Technology meets constructivism: Do they make a marriage? Educational Technology , May, 18-23.

Reigeluth, C. M. (1989). Educational technology at the crossroads: New mindsets and new directions. Educational Technology Research and Development, 37(1), 1042-1629.

Reigeluth, C. M. (1995). What is the new paradigm of instructional theory. [On-line]. Available: http://itech1.coe.uga.edu/itforum/paper17/paper17.html  

Reigeluth, C. M. (1996). A new paradigm of ISD? Educational Technology, May-June, 13-20.

Reigeluth, C. (Undated). Elaboration theory. [On-line]. Available: http://www.gwu.edu/~tip/reigelut.html

Rizo,F.M. (1991). The controversy about quantification in social research: An extension of Gage's "historical sketch." Educational Researcher, 20 (12), 9-12

Saettler, P. (1990). The evolution of american educational technology . Englewood, CO: Libraries Unlimited, Inc.

Schiffman, S. S. (1995). Instructional systems design: Five views of the field. In G.J. Anglin (Ed.), Instructional technology: Past, present and future. (2nd ed., pp. 131-142)., Englewood, CO: Libraries Unlimited, Inc.

Schuman, L. (1996). Perspectives on instruction. [On-line]. Available: http://edweb.sdsu.edu/courses/edtec540/Perspectives/Perspectives.html

Schwier, R. A. (1995). Issues in emerging interactive technologies. In G.J. Anglin (Ed.), Instructional technology: Past, present and future. (2nd ed., pp. 119-127)., Englewood, CO: Libraries Unlimited, Inc.

Schwier, R. A. (1998). Schwiercourses, EDCMM 802, Unpublished manuscript, University of Saskatchewan at Saskatoon, Canada.

Shank, P. (Undated). Constructivist theory and internet based instruction. [On-line]. Available: http://www.gwu.edu/~etl/shank.html

Skinner, Thorndike, Watson. [On-line]. Available: http://userwww.sfsu.edu/~rsauzier/Thorndike.html

Smorgansbord, A., (Undated). Constructivism and instructional design. [On-line]. Available: http://hagar.up.ac.za/catts/learner/smorgan/cons.html

Spiro, R. J., Feltovich, M. J., Coulson, R. J. (1991). Cognitive flexibility, constructivism, and hypertext: Random access instruction for advanced knowledge acquisition in ill-structured domains. Educational Technology, May, 24-33.

White, A. (1995) Theorists of behaviorism. [On-line]. Available: http://tiger.coe.missouri.edu/~t377/btheorists.html

Wilkinson. G.L. (Ed.) (1995). Constructivism, objectivism, and isd. IT forum discussion, April 12 to August 21, 1995. [On-line]. Available: http://itech1.coe.uga.edu/itforum/extra4/disc-ex4.html

Wilson, B. G. (1997). Thoughts on theory in educational technology. Educational Technology, January-February, 22-27.

Wilson, B. G. (1997). Reflections on constructivism and instructional design. [On-line]. Available: http://www.cudenver.edu/~bwilson/construct.html